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Quasilinear theory of collisionless Fermi acceleration
in a multicusp magnetic confinement geometry
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Particle motion in a cylindrical multiple-cusp magnetic field configuration is shown to be highly~though not
completely! chaotic, as expected by analogy with the Sinai billiard. This provides a collisionless, linear
mechanism for phase randomization during monochromatic wave heating. A general quasilinear theory of
collisionless energy diffusion is developed for particles with a Hamiltonian of the formH01H1, motion in the
unperturbedHamiltonian H0 being assumed chaotic, while the perturbationH1 can be coherent~i.e., not
stochastic!. For the multicusp geometry, two heating mechanisms are identified—cyclotron resonance heating
of particles temporarily mirrortrapped in the cusps, and nonresonant heating of nonadiabatically reflected
particles~the majority!. An analytically solvable model leads to an expression for a transit-time correction
factor, exponentially decreasing with increasing frequency. The theory is illustrated using the geometry of a
typical laboratory experiment.@S1063-651X~99!10311-8#

PACS number~s!: 52.50.Gj, 05.45.2a, 52.20.Dq, 52.55.Lf
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I. INTRODUCTION

The quasilinear diffusion equation in its original for
~QLT1! was a Fokker-Planck equation describing t
velocity-space diffusion of particles due to random scatter
by waves. In the absence of the waves the plasma was
sumed to be infinite and homogeneous so that the un
turbed motion was rectilinear. The diffusion equation w
derived @1–3# from the Vlasov equation by solving for th
perturbed part of the distribution function in the linear a
proximation and assuming the unperturbed distribution fu
tion to be essentially constant over the time scale of wa
particle interaction, then substituting back into the f
Vlasov equation and averaging over position~or, equiva-
lently, over the random phases of the waves!.

To put this formalism in a more general perspective, it
advantageous to cast it in Hamiltonian form, with the parti
motion in the absence of waves being described by an
perturbed HamiltonianH0. The total single-particle Hamil-
tonian is thenH01eH1, with the waves being incorporate
in the perturbation HamiltonianH1. In QLT1, all stochastic-
ity comes from the assumption of random phases in the
sumed broad spectrum of waves inH1. The smallness pa
rametere expresses the assumption that the amplitudes
individual waves are small, so that the short-time-scale p
turbations to the distribution function can be derived us
linear, O(e), theory~hence the terminology ‘‘quasilinear’’!.
The only nonlinear effect is the long-time diffusion d
scribed by the diffusion coefficient, which isO(e2).

It is not really necessary to assume an infinite, homo
neous plasma. The essence of QLT1 is the assumption
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H0 is integrable, so that a canonical transformation to actio
angle coordinates exists. Then the unperturbed motion
angle space is rectilinear, just as that in coordinate spac
the case of a homogeneous medium. This action-angle
eralization was carried out by Kaufman@4# and by Hazeltine
et al. @5# to derive a quasilinear diffusion equation~in action
space! for wave-particle scattering in axisymmetric toroid
magnetic confinement geometries~e.g., tokamaks!. The for-
malism has been used, for example@6#, to investigate the
effect of a sheared radial electric field on anomalous tra
port in a tokamak.

With the development of the theory of Hamiltonian cha
it has come to be realized that a quasilinear diffusion eq
tion can also be derived in cases whereH1 represents the
effect of acoherentwave, provided the interaction ofH0 and
H1 produces a chaotic motion. We call this form of qua
linear theory QLT2, and it is very useful in the theory
radio-frequency~rf! and microwave heating of plasmas@7#
because this is typically done with coherent waves.

Again, H0 is assumed integrable so that an action-an
transformation exists. In these theories theperturbation is
still the source of chaos~‘‘intrinsic stochasticity’’!, which
causes the action variables, constructed in the integratio
H0, to perform the random walk described by the quasilin
diffusion equation. Assuming the Hessian matr
]2H0 /]pi]pj to be nonsingular, the coherent perturbati
must exceed a certain amplitude for global resonance o
lap, and hence chaos, to occur@8–10#. Thus, paradoxically, a
criterion for QLT2 to apply is that the system be sufficien
nonlinear.

In the present paper we examine a third form of quasi
ear theory, which we call QLT3. This case is the compl
obverse of the original quasilinear diffusion problem: w
now assume the unperturbed HamiltonianH0 to be com-
7400 © 1999 The American Physical Society
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PRE 60 7401QUASILINEAR THEORY OF COLLISIONLESS FERMI . . .
pletely nonintegrable, giving rise to strongly chaotic moti
in the unperturbedsystem. The chaotic dynamics of the u
perturbed Hamiltonian system then provides randomiza
and allows the application of a quasilinear formalism to d
rive the diffusion equation for the distribution function.

Of course, sinceH0 is not integrable, an action-angle re
resentation does not exist. In fact, we assumeH0 to be so
strongly chaotic that the unperturbed motion covers ess
tially the entire energy surfaceH05E ergodically, except as
restricted by integrals of the motion associated with any c
tinuous symmetries ofH0. The goal of this paper is to dete
mine the diffusion inE caused by the time-dependent pertu
bationH1.

Since the unperturbed motion provides the source of
chasticity~with no threshold!, we can, as in QLT2, assum
the perturbation to be coherent. Thus the theory is applica
to wave heating of plasmas in strongly nonintegrable m
netic confinement geometries.

The assumption of uncorrelated gyrophase in succes
passes through the resonance region is often made in
derivation of a quasilinear diffusion equation to describe
clotron resonance heating of magnetically confined plasm
However, in simple confinement geometries, such as m
netic mirrors,H0 is essentially integrable owing to the exi
tence of the adiabatic invariantm and another integral due t
symmetry, or a second adiabatic invariant. Lichtenberg
Lieberman@11# have analyzed collisionless heating in su
systems using area-preserving maps, and find the rand
phase assumption to be valid only well beyond the nonlin
threshold where the last invariant circle is destroyed and c
otic motion becomes global. In our nomenclature, quasilin
diffusion in these systems is an example of QLT2, n
QLT3.

On the other hand, in systems with a null in the magne
field m is not globally conserved and the situation is rath
different from that in the much-studied mirror systems. F
instance, Yoshidaet al. @12# have recently studied rf heatin
in a two-dimensional slab model with a neutral line, wherem
conservation is broken. They find heating due to the onse
chaos at finite amplitude of the perturbing field. Howev
their unperturbed system has two symmetry directions,
thus theirH0 is integrable, despite the breaking of the ad
batic invariant. Thus their model must be classified a
QLT2 case also.

In systems with a null in the magnetic field and onlyone
symmetry direction, however,H0 is not in general inte-
grable. An important class of such systems are the magn
cusp confinement geometries, which are much used in l
temperature plasma physics due to the ease with which
can be created with arrays of permanent magnets@13,14, pp.
146–150#. In this paper we give evidence that they fulfill th
criterion for systems of type QLT3 in that their unperturb
dynamics is almost completely chaotic.

We know from the work of Sinai@15,16# that particle
motion on a billiard table with a convex boundary is
strongly chaotic system due to the defocussing effect of e
collision with this boundary. In fact Sinai showed the moti
to be strongly mixing, so that ergodic theory could be a
plied. This suggests that cusp confinement systems, w
magnetic fields lie on surfaces that are convex toward
plasma, are strongly chaotic. Indeed the four-cusp Ham
n
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21py
21x2y2) was at one time conjectured t

be completely chaotic like a Sinai billiard. Although Dah
qvist and Russberg@17# disproved this conjecture by findin
a stable periodic orbit, they found that the island of stabil
surrounding this orbit was extremely small, so for practic
purposes one can assume that the energetically acces
phase space is covered ergodically in this system.

In this paper we study a magnetic field configuration co
sisting of a ‘‘picket fence’’ of infinite linear magnetic di
poles, producing multiple line cusps. This can be regarde
a simplified model for a low-temperature plasma source, c
ated using arrays of permanent magnets@18,19#. It is also a
rather simple model, in which the unperturbed dynamics
be simplified analytically to a considerable extent by the u
of complex variable theory.

In the limit of a large number of dipoles the interior of th
plasma is essentially free of magnetic field and the unp
turbed motion is rectilinear in the interior region, while ne
the edge of the confinement region, a particle can be
flected over a range of angles. Thus we might expect
configuration to approximate a chaotic billiard problem.~In
the original Sinai problem the convex boundary was in
interior of the domain, whereas the billiard analog of t
present example has an outer boundary that is convex ex
for cusps, like the ‘‘bow-tie’’ billiard shown in Fig. 7.24~e!
of Ref. @16#.!

The problem is also related to a model originally pr
posed by Fermi@20–22# for explaining the acceleration o
cosmic rays to the extraordinarily high energies observed
the Fermi model the cosmic ray particles move rectilinea
except during occasional collisions with moving magnetiz
clouds of gas, which cause diffusion in energy space. T
present model includes both the possibility of cyclotro
resonance heating in the mirrorlike cusp regions and n
resonant heating of particles reflected without penetra
deeply into the cusps. The latter case is much closer to
original Fermi problem and is the main focus of the pape

In Sec. II we introduce the confinement geometry a
unperturbed Hamiltonian in detail, and in Sec. III we analy
the dynamics of this system and show it is indeed stron
chaotic for the class of particles~‘‘free particles’’! that
traverse the central low-field region. However, in Se
III D 3 we produce a counterexample to any conjecture t
the motion is totally chaotic by finding a stable periodic o
bit.

In Sec. IV we introduce the wave-particle interaction. T
general quasilinear diffusion equation is derived in Sec.
An analytically solvable one-dimensional model of the ma
netic field is used in Sec. VI to estimate heating of nonad
batically reflected particles. The result is of the form e
pected from simple Fermi acceleration theory multiplied b
transit-time reduction factor that becomes exponentia
small when the transit time is much longer than the period
the applied field. The theory is discussed using typical
rameters for permanent-magnet confinement experimen
Sec. VII.

II. UNPERTURBED HAMILTONIAN

A. Two-dimensional magnetic Hamiltonian

The behavior of a sufficiently dilute plasma can be an
lyzed on the basis of single-particle motion in magnetic a
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7402 PRE 60R. L. DEWAR AND C. I. CIUBOTARIU
electric fields made up of an externally imposed compon
and an internally generated component produced by the
lective currents and charges from the combined effect
many otherwise noninteracting particles. In this paper
suppose that the self-consistent component is negligible
analyze single-particle motion in an imposed magnetic fie

Consider the motion of a particle of chargeq and massm
in a straight, infinitely long magnetic confinement syste
with vector potentialA5c(x,y)ez , where x, y, and z are
Cartesian coordinates andez is the unit vector in thez direc-
tion. The magnetic field isBx5]c/]y, By52]c/]x, Bz
50, so contours of the flux functionc(x,y) in any planez
5const define magnetic field lines.

The Hamiltonian is~see e.g.,@23#!

H05
px

2

2m
1

py
2

2m
1

@pz2qc~x,y!#2

2m
, ~1!

where pi( i P$x,y,z%) are the canonical momenta, Ham
ton’s equations of motion beingẋi5]H0 /]pi , ṗi5
2]H0 /]xi .

B. Multicusp flux function

Assuming no currents present in the plasma,c obeys
Laplace’s equation. It is a standard result that tw
dimensional solutions of Laplace’s equation can be c
structed by taking the real or imaginary part of any analy
function of z[x1 iy @24#. Thus we write

c~x,y!5ReC~z!, ~2!

whereC(x,y) is thecomplex flux function.
For instance, a line current~line magnetic monopole! at

z0 is represented by the real~imaginary! part of ln(z2z0).
Although a magnetic monopole cannot be realized in

ture, a magnet can be modeled as a superposition of m
netic dipoles. We consider a magnet that is long in thz
direction, thin in thex and y directions, and magnetized i
the x direction so that it can be modeled by a line magne
dipole. Such a linear dipole can be produced by differen
tion of Im ln(z2z0) with respect tox0.

Superimposing the flux functions for 2n linear magnets of
strength alternately1K and2K lying in a circular cylinder
of radiusa about thez axis we findc for a circular multidi-
pole magnetic confinement system,

c5K Im (
n850

n21 F un
4n811

z2aun
4n811

2
un

4n821

z2aun
4n821G

5
2nK

a
ReF S z

aD n

1S a

z D nG21

. ~3!

Hereun[exp(pi/2n) is the 4nth root of unity. The equiva-
lence of the first and second forms can be verified by sh
ing that they have the same poles and residues and the
value atz50.

Thus, comparing with Eq.~2!, we see that the comple
stream function for a circular dipole picket fence is given
nt
l-
f

e
nd
.

-
-

c

-
g-

c
-

-
me

C5
2nK

a F S z

aD n

1S a

z D nG21

[
nK

a
sechFn lnS z

aD G . ~4!

It is clear from the first form thatC has poles at the 2nth
roots of 2a2n. In terms of polar coordinatesr and u such
that z5r expi u, the poles are atr 5a, u5p/2n12lp, l
50,1, . . . ,2n21. Contours ofc ~lines of force! are shown
in Fig. 1 for the casen56, with distances measured in uni
of a/n.

C. Near field and nondimensionalization

We now consider the behavior ofc in the region between
two magnets, which for definiteness we take to be those
mediately above and below the positive realx axis. We ex-
pand about the pointz5a, on the circle on which the mag
nets are located, by settingz5a1j, where j[x2a1 iy .
Assuminguju!a, we see from Eq.~4! that

C'
nK

a
sechS nj

a D . ~5!

Thus, on thex axisc peaks atx5a and it decays rapidly on
either side. Furthermore, we see that the scale length of tx
and y variation is nota but a/n. In Sec. III D 1 we shall
encounter Eq.~5! again in the context of the asymptotic lim
n→`.

ExpandingC to second order innj/a we find c[ReC
'cX$12n2@(x2a)22y2#/2a2% in the neighborhood of
(a,0), where

cX[nK/a ~6!

is the value ofc at this saddle point, the location of
magnetic-field null. It is also useful to define a typical ma
netic field B0 in the strong-field region via the relationB0
[ncX /a.

FIG. 1. Contours of the flux function for a typical cylindrica
multicusp geometry produced by 12 line dipoles of alternating
larity.
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We term the energy of a particle with momentump50
located at this saddle point theescape energy

Eesc[
q2cX

2

2m
[

1

2m S qnK

a D 2

. ~7!

In all numerical work and figures in this paper we non
mensionalize by measuring distance in units ofa/n, mass in
units ofm, time in units of the typical inverse angular cyclo
tron frequency

tX[
m

uquB0
[

a2m

n2Kuqu
, ~8!

and charge in units ofuqu. In these unitsa5n, m5uqu5tX
5cX5B051, andEesc5

1
2 .

III. UNPERTURBED PARTICLE DYNAMICS

A. Dynamics in complex notation

For a givenpz , the dynamics is a two-degree-of-freedo
autonomous Hamiltonian system which can be compa
written using complex notation as

ż5
1

m
pz , ~9!

ṗz5
q

m
@pz2q ReC~z!#@C8~z!#* ,

where the prime onC means the derivative with respect
its argument, * means complex conjugate, andpz[px
1 ipy .

B. Integrability and effective potential

BecauseH0 is independent ofz,pz is a constant of the
motion. Also,H0 itself is a constant of the motion,H05E,
where the constantE is the total energy. However, the ab
sence of a third integral of the motion means the system
not integrable. Thus we must resort to numerical integrat
to investigate the nature of the unperturbed orbits.

Before proceeding to a discussion of the numerical
sults, however, we observe that some qualitative underst
ing of the motion can be found by determining the bounds
the motion implied by the constancy ofH0. Inspecting Eq.
~1! we see that the termVeff[(pz2qc)2/2m in H0 acts as an
effective potentialin which the particles move. The motio
in the (x,y) plane is thus bounded by the curvesVeff(x,y)
5E. Note thatVeff>0, with equality occurring on the con
tours c5pz /q. Also, sincec vanishes at the origin,Veff

5pz
2/2m there.

In the casepz50, the curvesVeff(x,y)5const are just
level curves ofucu. There are thus two cases.

~1! Perfect confinement.E,Eesc, the curve ucu
5(2mE)1/2/uqu encloses the origin~though it has cusps at th
magnets! and there is thus no leakage of particles withpz
50 through the dipole picket fence.
ly

is
n

-
d-
f

~2! Partial confinement.For E.Eesc, the curves ucu
5(2mE)1/2/uqu are disjoint and thus particles can esca
through the ‘‘mountain passes’’~see Fig. 1! between the
magnets.

In either case the particles are free to traverse a la
region including the origin, like particles rolling on a billiar
table@in case~ii ! it is a billiard table with pockets#. We refer
to particles on such orbits asfree particles, to be contrasted
with the trapped particles discussed in the next section.

C. Trapped particles

For pzÞ0 a new class of orbit arises, thetrapped par-
ticles. This occurs when the energy is less than the value
Veff at the origin, i.e., whenE,pz

2/2m, for then the low-
magnetic-field central region is energetically inaccessi
~see Sec. III D! and the particle must be confined in the ed
region near the magnets, as illustrated in Fig. 2.

Because deeply trapped particles are always in a regio
strong magnetic field, their dynamics can be analyzed~see,
e.g.,@23#, pp. 21 and 22! by decomposing the motion into tha
of the guiding center, with velocityv5v iB/B1drifts, and a
gyromotion with velocityv' in the plane locally orthogona
to B. The adiabatic invariant

m[
mv'

2

2B
~10!

is conserved to high degree of approximation, providing
approximate third integral of the motion. The unperturb
dynamics of this class of orbit is thus quasi-integrable,
chaotic, implying that we must use quasilinear theory of ty
QLT2 to derive a diffusion equation~i.e., heating will occur
only beyond a nonlinear amplitude threshold!. Cyclotron
resonance heating in mirror geometries has been much
cussed in the literature~@14#, pp. 413–422! and we shall not
discuss the heating of the trapped particles in this paper

D. Free particles

For a given energyE and conserved momentumpz , the
energetically accessible regionis the set of points (x,y) for

FIG. 2. A typical trapped-particle orbit in the magnetic fie
shown in Fig. 1. The thick lines show the boundaries of the en
getically accessible regions.
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7404 PRE 60R. L. DEWAR AND C. I. CIUBOTARIU
which there existpx and py such thatH0(x,y,px ,py ,pz)
5E. From Eq.~1! we get the inequality

@pz2qc~x,y!#2<2mE. ~11!

We define the free particles as those for which the ori
is energetically accessible. Thus, sincec(0,0)50, Eq. ~11!
implies that free particles are those for which

pz
2<2mE. ~12!

The total region accessible to free particles is the se
(x,y) for which the ranges ofpz defined by Eq.~11! and Eq.
~12! are not disjoint. This gives the condition

uqc~x,y!u<2~2mE!1/2. ~13!

This inequality being satisfied, the intersection of the ran
defined by Eq. ~11! and Eq. ~12! is @qc
2(2mE)1/2,(2mE)1/2# for qc.0, or @2(2mE)1/2,qc
1(2mE)1/2# for qc,0.

A typical trajectory for a free particle with energy we
below the escape energy is shown in Fig. 3. In this casepz
50, and the initial conditions arex05y050, px050.04,
py050.05, givingE50.002 05.

We see that the energetically accessible region is boun
by a series of curves~shown as thick lines! joining in cusps
at the magnets. These bounding curves are convex tow
the confinement region, except at the cusps, where the m
netic field goes to infinity so that no particle can penetra
Also we see that the motion of the particle well away fro
the bounding curves is approximately rectilinear so that
system does indeed appear like a physical realization
Sinai billiard system@15#.

Although the orbit in Fig. 3 looks chaotic, a better test f
chaos is to do a Poincare´ surface of section puncture plot, a
shown in Fig. 4 for a particle withpz50 and energyE
50.0017 started near the periodic orbit described in S
III D 3. The Poincare´ surface of section isx.0,y50 and its
images under the symmetry operationz°exp(ip/6)z. Dots
indicate both upward- and downward-going passes of

FIG. 3. A typical free-particle orbit in the magnetic field show
in Fig. 1, with initial conditions as described in the text.
n

f

s

ed

rd
g-
.

e
a

c.

e

orbit. It is seen that the orbit appears to fill the energetica
accessible phase space ergodically, indicating strong ch

However, the interaction with the field near the boundi
curve is not specular reflection with a zero radius of cur
ture, so our magnetic cusp confinement system is not
cisely analogous to that studied by Sinai. In fact, study
Fig. 3 we see that there are two qualitatively different kin
of reflection event—approximately specular reflection with
small-but-finite radius of curvature, and ‘‘sticky reflections
near the cusps, where the particle is temporarily trapped
one-sided mirror field and oscillates several times before
flection. As explained below, we call these nonadiabatic a
adiabatic reflections, respectively.

1. Scattering analysis of reflection, largen

In order to make the reflection process a precisely defi
event we go to the large-n limit, in which the spacing be-
tween the magnets,pa/n, and the scale length of magnet
field variation,a/n, become small compared with the radiu
a. Since we are interested in dynamics near the wall of m
nets, we shift the origin to the saddle point atz5a by de-
fining j[z2a, just as in Sec. II C. Again Eq.~5! applies at
leading order, but this time its region of validity extend
beyond the region of the magnetic null to include the hig
field regions near the magnets~the only requirement being
uju!a).

We now take Eq.~5! to be theexactcomplex flux func-
tion for the model problemof an infinite line of magnets
~treatingn as an arbitrary parameter, which is scaled out
the nondimensionalization defined in Sec. III B!. A reflection
event is now precisely defined as a scattering process
which a particle impinges from Rej52` ~where the orbit
is asymptotically a straight line!, reflects off the magnetic
field of the magnets, then retreats back toward Rej52`.

In Fig. 5 we illustrate some typical reflection events f
particles with initial momentump0x50.06, py050, pz50,
giving energyE50.0018. For small initial values ofy, y0,
the reflection is approximately specular, but asy0 approaches
p/2 ~the height of the first magnet above thex axis!, the orbit
undergoes more and more oscillations~gyrations! before be-
ing reflected back.

Clearly, fory0'p/2 we can use adiabatic invariant theo
~cf. Sec. III C! to treat the process of reflection in the mirr
field in the throat of the cusp field, whereas fory0'0 the
particle does not complete even one gyration about the m
netic field, so the adiabatic invariant is not defined on a
part of the orbit. In order to determine on which part of a
given orbit m is approximately conserved, we compute t
cyclotron frequencyf c[vc/2p at each point on the orbit

FIG. 4. Intersections of an orbit with the Poincare´ surface of
sectiony50 described in the text.
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PRE 60 7405QUASILINEAR THEORY OF COLLISIONLESS FERMI . . .
wherevc(t)[uquB(t)/m, and compare it with the time-rate
of-change of lnB.

Suppose that the inequalityf c.Ḃ/B holds over the inter-
val t1,t,t2 and is violated outside the interval. Adiabat
invariance theory applies during this interval, provided t
particle has enough time to execute at least one gyroorbit
determine the latter point, we calculate the total gyroph
change over the interval in which adiabatic invariance pot
tially applies,

Df[E
t1

t2
vcdt. ~14!

Then we define anadiabatic reflectionas one for which
Df/2p.1 and anonadiabatic reflectionas one for which
Df/2p<1.

Figure 6 shows this adiabaticity parameter for the case
normal incidence, as depicted in Fig. 5. Two values of
ergy are shown, a relatively high energyE50.01 and the
low-energy limit E→0 ~see below!. Reflection is nonadia-
batic for roughly 60% of particles in both cases.

Figure 7 shows the dependence ofDf/2p on impact pa-
rametery0 for particles incident at an angle of 20° to th
normal in thex-y plane, and withpz50. ~Herey0 is defined

FIG. 5. A set of nine orbits, incident in the direction normal
the line of magnets, with different ‘‘impact parameter’’y0. The
thick line shows the boundary of the energetically accessible reg
The origin of thex axis has been shifted to lie on the line of ma
nets.

FIG. 6. Adiabaticity parameterDf/2p vs impact paramete
times 2/p for normally incident orbits with energy 0.01~solid line!
and very low energies~dashed line!.
e
o
e
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such that the orbits have initial valuesx5X0 , y5Y01y0,
where X0 is an arbitrarily large negative constant and t
constantY0 is chosen so thaty050 corresponds to an orbi
symmetric about thex axis.!

It is seen that the adiabatic region is much reduced in
low-energy case, and has virtually disappeared in the h
energy case. At angles of incidence greater than 25°, b
high- and low-energy particles reflect nonadiabatically for
impact parameters. The ratio of the solid angle occupied
the cone of angles of incidenceh,25° to the cone of all
possible angles of incidence,h,90° is about 0.093. Thus
we conclude that considerably less than 10% of partic
reflect adiabatically.

The low-energy limit referred to above is defined by o
serving that the lower the incident energy, the larger
value of 2Rej at which the particle reflects. Thus, in th
limit we can replace sech(nj/a) by 2 exp(nj/a) in Eq. ~5!
and define the low-energy approximation as the result
replacingC with

C low[2cX expS nj

a D , ~15!

wherecX is defined in Eq.~6!.
The dynamics in this limit exhibits an important sca

invariance: if we displace the orbit in thex direction using
the transformationj5j81h, whereh is a real constant, then
the flux function changes by a constant factor:C low(j)
5exp(nh/a)Clow(j8). Inspecting Eq.~10! we see that the
transformationp5exp(nh/a)p8, t5exp(2nh/a)t8 leaves the
form of the equations of motion invariant. The energy
transformed according toE5exp(2nh/a)E 8. Clearlyy0 is in-
variant and it is also easy to show from Eq.~14! that Df is
invariant under this scaling transformation. Thus we have
result thatin the low-energy limitthe functionDf(y0) is
independent of energy.

2. z motion

Although our idealized system is infinitely long, any re
system will be of finite length and it is therefore of interest
enquire as to the rate of drift in thez direction. Figure 8
shows the motion inz for the case shown above. We see th
for the casepz50, the motion appears to be a random wa
with no secular drift.

n.

FIG. 7. Adiabaticity parameterDf/2p vs impact parameter
times 2/p for orbits incident at 20° to the normal with energy 0.0
~solid line! and very low energies~dashed line!.
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3. Periodic orbits

As for the four-cusp system of Dahlqvist and Russb
@17#, we show that ourn56 example is notcompletelycha-
otic by showing numerically that there is at least one sta
orbit surrounded by invariant tori@Kolmogorov–Arnol’d–
Moser ~KAM ! surfaces# which make a small region aroun
the periodic orbit dynamically inaccessible to the chaotic
bit filling most of the energy surface.

We expect the most stable orbit to be the one with
highest symmetry allowed by the system, i.e., 2n-fold sym-
metry, since this is the smoothest orbit, least like the tra
tory of a billiard ball. This is illustrated in Fig. 9 for the cas
n56, pz50, with the orbit passing through (x,y)05(3,0).
The corresponding momentum required to close the orb
(px ,py)05(0,0.04925), giving an energyE50.001 700 82
and a period 28.96. Because of its 12-fold symmetry we
this the dodecagonal orbit.

To investigate the stability of such an orbit we lineari
about the orbit and calculate the eigenvalues of the ma
evolving a neighborhood of the phase-space point (x0 ,py0)
in thex.0, y50 half plane to its intersection with the ne
surface of section that is equivalent under the symmetry
erationz°exp(ip/6)z. @The crossing time is found numer
cally by searching for the first zero of arg exp(2ip/6)z(t).#
For the case shown in Fig. 9, the eigenvalues
20.541 6260.840 624i , which lie on the unit circle in the
complex plane, indicating stability.

This stability is confirmed more graphically by the Poi
caréplots in Fig. 10 for some neighboring orbits on the sa
energy surface as the dodecagonal orbit shown in Fig

FIG. 8. Thez component of the orbit shown in Fig. 3.

FIG. 9. Stable periodic orbit with 12-fold symmetry—th
‘‘dodecagonal’’ orbit—as described in the text. The thick lin
shows the boundary of the energetically accessible region.
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Figure 10 shows iterates of the map (x,px)°(x8,px8) found
by calculating the crossing timet with the u5p/6 line as
described above, then calculatingx85Re exp(2ip/6)z(t),
px85Re exp(2ip/6)pz(t).

Figure 10 shows an island of regular motion in a va
chaotic sea—if we start much beyond the last orbit show
the orbit rapidly moves far away from the periodic orbit. F
example, the chaotic orbit shown in the Poincare´ plot, Fig. 4,
started at (x,y)05(3.02,0), withpx50 and py adjusted to
give the same energy as that of the periodic orbit plotted
Fig. 9.

The orbits in Fig. 10 appear to lie on invariant curves th
are topologically circular, being the intersection of invaria
tori with the surface of section. The quasitriangular shape
the outer orbits is due to the existence of three unstable
riodic X points which define the separatrix between regu
and chaotic motion~cf. the bifurcation with branching ratio
1/3 in Fig. 1~c! of @25#!.

Scanning through a range of initial values ofx, so as to
vary the energyE, we find that for allE less than the escap
energyEesc ~and somewhat beyond! the dodecagonal orbit is
stable. We have not done an exhaustive study of other p
odic orbits, but have established that the four-fold-symme
‘‘square’’ orbit is unstable below an energy of about 0.1, b
stabilizes above this value.

The existence of a stable periodic orbit shows that
multiple-cusp confinement system isnot completely chaotic.
However, the islands around the few stable orbits are v
small. For instance, the area occupied in thex-px plane by
the island shown in Fig. 10 is about 731025, compared with
the energetically accessible area of the Poincare´ section,
*@2mE2q2c2(x,0)#1/2)dx'0.37, i.e., four orders of magni
tude smaller. Even a very small amount of extrinsic stoch
ticity ~e.g., small-angle collisions with other particles! will
easily destroy such small islands of stability.

Thus we conclude that, for practical purposes, the
sumption of complete chaos in the free-particle dynamic
well justified, and hence assume that any orbit covers
energy surface ergodically.

IV. WAVE-PARTICLE INTERACTION MODEL

For a given wavelength,l, of the incident wave, the ratio
l/(a/n) tends to infinity asn→`. Hence we consider the
long-wavelength limit, in which the wave-particle interactio
is via the uniform, oscillatory electric field E
5Re(Ẽ expivt), whereẼ is a constant complex vector. O
the other hand, we assumev@vp,e , wherevp,e is the elec-
tron plasma frequency, so that the oscillatory part of

FIG. 10. Poincare´ section transverse to the dodecagonal or
showing several satellite orbits which appear to be on invariant t
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electrostatic potential can be ignored. Thus the electric fi
is taken to be produced by the vector potentialA1

5Re@ i (Ẽ/v)expivt#.
In reality, uniformity of E applies only during one wall-

scattering event, which occurs over the scale lengtha/n,
whereasE can be different at different points on the pick
fence if l is comparable witha. In this paper we consider
model system in whichE is strictly constant in space, but w
model the real situation by choosingẼ from a random en-
semble of values with probability distribution matching t
distribution of field amplitudes and phases actually enco
tered on the cylinderr 5a. We also assume the distributio
of initial phases to be uniform, which means that theen-
semble averaging operator^•& automatically includes phas
averaging.

The model Hamiltonian determining the full particle d
namics is thus taken to beH01H1, whereH0 is given by Eq.
~1!, and

H1[2
q

mv
Re@ i ~p2qcez!•Ẽ expivt#, ~16!

with ez being the unit vector in thez direction. The above
form for H follows simply by expanding (p2qA)2/2m and
dropping the term quadratic inẼ as it has no spatial depen
dence and thus does not affect the dynamics.~If we had not
taken E to be constant in space, it would be necessary
retain this term to include ponderomotive force effects.!

Note thatH1 produces an oscillatory correction]H1 /]p,
to the velocityẋ that is independent of position, whereas t
oscillation inṗ is localized around the edge region due to t
localization of c. Thus p is nonoscillatory in the middle
region wherec is negligible. This is a consequence of o
choice of gauge for representingE, which automatically
gives an oscillation-center representation~@23#, p. 47! in gen-
eralized momentum space. The localization ofṗ to the edge
region where the particles are reflected is desirable since
is the region where irreversibility is introduced—in th
middle region the particles simply respond adiabatically
the high-frequency field.

It is possible also to remove the oscillation in the gen
alized position coordinate in the middle region, so as to co
pletely localize the interaction to the edge region, by mak
a canonical transformation to oscillation-center variab
@26#. However, as we are interested in the diffusion in e
ergy, not position, we have not found this transformation
be useful.

V. QUASILINEAR DIFFUSION

The Vlasov equation for the single-particle distributio
function f (x,p,t) can be written

] t f 1$ f ,H%50, ~17!

where the Poisson bracket$ f ,H%[]xf •]pH2]pf •]xH.
We decomposef into a nonfluctuating partf̄ and a fluc-

tuating remainderf̃ . We define f̄ [^^ f && where ^^•&& in-
cludes not only an average over the wave phase via ense
ld

-
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o

-
-
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averaging, but a phase-space average over the unpertu
energy surface: for arbitrary phase-space functiong(x,p,t),
varying on both the fast time scalev21 and a slower~diffu-
sion! time scale, we definê^g&&(E,pz ,t), varying only on
the slow time scale, by

^^g&&[
1

NE
r ,a

d2xE d2pd~E2H0~x,p!!^g~x,p,t !&,

~18!

wherer[(x21y2)1/2, d2x[dxdy, d2p[dpxdpy , d denotes
the Diracd function, and the normalizing factorN(E,pz) is
defined by

N[E
r ,a

d2xE d2pd„E2H0~x,p!…. ~19!

The result of applying this projection operation is a fun
tion only of E and t, so that$ f̄ ,H0%[0 and hence the aver
aged part of the distribution functionf̄ is invariant under the
unperturbed dynamics. The projection of the distributi
function onto the energy surface using the averaging op
tor is an extreme form of phase-space coarse graining. O
ing to the highly chaotic nature of the unperturbed dynam
we assume that this coarse-grained distribution function
laxes to a function of the constants of the unperturbed m
tion, E and pz , on a time scale much faster than the qua
linear diffusion time scale. We assume all particles to
confined, so that the region of phase space defined bE
5const,pz5const is bounded withinr ,a.

Applying the operation̂ ^•&& to Eq. ~17! we have

] t f̄ 1^^$ f̃ ,H1%&&50. ~20!

Writing the Poisson bracket in the form$ f̃ ,H1%
[]x•( f̃ ]pH1)2]p•( f̃ ]xH1) and integrating by parts~assum-
ing the particle confinement is good enough that the bou
ary contribution can be ignored! we find

^^$ f̃ ,H1%&&5
1

N
]

]E ~N^^ f̃ Ė&&!1
1

N
]

]pz
~N^^ f̃ ṗz&&!,

~21!

where Ė is the rate of change in the energy integral of t
unperturbed system,E(t)[H0„x(t),p(t)…, along the per-
turbed orbit. Noting thatH 0̇5$H0 ,H01H1%[$H0 ,H1%, we
see that

Ė5$H0 ,H1%. ~22!

Also, ṗz[$pz ,H01H1%5$pz ,H1% @which vanishes for our
simple interaction term, Eq.~16!#.

Subtracting Eq.~20! from Eq. ~17! we also have

] t f̃ 1$ f̃ ,H0%52$ f̄ ,H1%1O~Ẽ2!. ~23!

Linearizing Eq. ~23! and solving by integration along th
unperturbed trajectories from an initial time2T, we have
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f̃ ~x,p,t !5 f̃ „x~2T!,p~2T!,2T…

2E
2T

t

dt8F Ė8
] f̄

]E ~E 8,pz8 ,t8!1 ṗz8
] f̄

]pz
~E 8,pz8 ,t8!G .

~24!

In calculatingĖ8[ Ė(t8) using Eq.~22!, the right-hand side is
to be evaluated at the point„x(t8),p(t8)… on the unperturbed
phase-space trajectory that passes through (x,p) at time t,
and similarly for ṗz(t8) if an interaction model is used fo
which it is nonvanishing.

We now observe that, for largeT, f̃ (x8,p8,t8)(t852T)
becomes decorrelated fromĖ(t) and ṗz(t) and thus does no
contribute to the averages on the right-hand side of Eq.~21!.
The decorrelation time is the duration of one wall-scatter
event, which is of the order of thetransit time

t tr~E![
a

nuvu
~25!

of a free particle with speeduvu[(2E/m)1/2 through the scale
length a/n of the magnetic field variation. Thus, assumi
T@t tr , we can set the initial value termf̃ (x8,p8,t8)(t85
2T) to zero without significant error.

Also, if x(t) is in the wall-interaction region, whereĖ and
ṗz are significant, thenx(2T) is far from the wall soĖ
(2T) and ṗz(2T) are negligible~becausec is essentially
zero there—see the discussion at the end of Sec. IV!. Thus
we can, to a very good approximation, extend the lower li
of the integral in Eq.~24! to 2`.

WhereasT is assumed large with respect tot tr , we as-
sume it to be small with respect to the characteristic evo
tion time for the distribution functionf̄ . ~That is, we assume
the wave to be of sufficiently low amplitude that it tak
many wall-interaction events for significant heating to o
cur.! Thus we can also make theMarkovian approximation

that f̄ (E 8,pz8 ,t8) can be moved outside the integral in E
~24! with negligible error.

Substituting Eq.~24! in Eq. ~21! and then Eq.~20! we find
~assumingṗz50) thequasilinear diffusion equation

] f̄

]t
5

1

N
]

]E S ND
] f̄

]ED , ~26!

whereD(E,pz) is the energy diffusion coefficient, defined b

D[ 1
2 E

2`

`

C~t!dt, ~27!

with the two-time correlation functionC(E,pz ,t)

C~t![^^Ė~ t2t!Ė~ t !&&5^^Ė~t!Ė~0!&&, ~28!

where the second form follows from the fact that, because
the average stationarity of the dynamical system,C depends
only on the time difference,t5t2t8. Also note that the
projection operation̂^•&&, Eq.~18!, can be done using eithe
g

it

-

-

of

initial or final values as independent variables because
Jacobian of the transformation is unity~preservation of phase
space volume! and H0 is an invariant of the unperturbe
motion. ThusC(t) is an even function, which fact we use
to extend the upper limit of the integral in Eq.~27! to infin-
ity. We can also use time reversal invariance to sh
C(E,pz ,t)5C(E,2pz ,2t)5C(E,2pz ,t).

We end this section by calculating the heating rate due
Fermi acceleration. First we define the total plasma ene
per unit length in thez direction,

U~ t ![E
0

`

dEE
2`

`

dpzNE f̄ . ~29!

Differentiating U with respect to time, using Eq.~26! and
integration by parts we find the rate of power deposition in
the plasma due to reflections from the confining edge m
netic field under the influence of an electromagnetic wav

U̇~ t !52E
0

`

dEE
2`

`

dpzND
] f̄

]E . ~30!

We have assumed that] f̄ /]E vanishes at an energy less tha
or equal to the maximum confined energyq2cX

2 /2m dis-
cussed in Sec. II C so that we can ignore boundary contr
tions.

VI. ONE-DIMENSIONAL MODEL

We saw in Sec. III D 1 that most particles reflect nonad
batically in less than one gyroperiod, and thus should no
sensitive to the details of they variation of c ~i.e., subtle
resonance effects should not be important for most particl!.
This suggests we estimate the effect of nonadiabatic refl
tion by using a one-dimensional model Hamiltonian obtain
by replacingc(r ,u) in Eq. ~1! with an axisymmetric flux
function, c(r ) ~cf. the one-dimensional model used b
Yoshida et al. @12#!. The conservation of the angular mo
mentumpu then allows formal integration of the equations
motion by the method of quadratures.

Although such a one-dimensional flux function violat
Laplace’s equation, and therefore would require a plas
current to produce it, this fact is irrelevant to the sing
particle dynamics. By suitable choice ofc(r ) we can model
the gross radial confinement properties of the tw
dimensional flux function. The main loss in the physics
that c(r ) produces no radial component ofB, and hence no
interaction withẼu . But if we assume perfectly conductin
wall boundary conditions,Ẽ must be purely radial at the
vacuum vessel wall~assumed just inside the array of ma
netic dipoles! so Ẽu ~andẼz) can be assumed to be small
the interaction region anyway.

We further simplify the reflection dynamics by going
the large-n limit, so that the dipoles become a linear arr
and we can use Cartesian coordinates as in Sec. III D
Also, Figs. 6 and 7 indicate that the low-energy approxim
tion, Eq. ~15!, is good for nonadiabatic reflections. In th
limit the field strengthB is independent ofy, so we define the
equivalent one-dimensional flux functionc(x) as that which
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gives the same field strengthB(x). That is, B5uC low8 (j)u
[c8(x), where

c~x!52cX expS nx

a D . ~31!

~In the above we have shifted the origin of thex axis to lie on
the same line as the array of dipoles.! As a final simplifica-
tion of the unperturbed dynamics we evaluateD only at pz
50. That is, we consider only unperturbed orbits having
constant of the motionpz50.

In the large-n limit the boundary region wherec is not
small makes negligible contribution to Eq.~19! and thus we
find the normalizing factorN to be independent of energy

N52p2a2m. ~32!

The equations of motion Eq.~10! can be integrated ex
plicitly to give

x~ t !5S a

nD lnS u sech
2u~ t2tmax!

tX
D , ~33!

px~ t !522uS ma

ntX
D tanh

2u~ t2tmax!

tX
, ~34!

wheretX is defined in Eq.~8! and the constants of integra
tion areu[exp(nxmax/a) and tmax. Inspecting Eq.~33! we
see thatxmax is the maximum value ofx attained over the
entire orbit, andtmax is the time at which this point is
reached.

Assuming a perfectly conducting vacuum vessel we
Ẽy5Ẽz50. Then, from Eq. ~16!, H15

2(q/mv)Re(ipxẼx expivt) and we have the simple expre
sion for the instantaneous power transfer to a particle,
~22!,

Ė52 ṗx

]H1

]px
5

q

v
Re@ iẼxẍ~ t !expivt#. ~35!

In evaluating the diffusion coefficient using Eq.~27!, it is
convenient first to commute the time integration with t
averaging operation, so that we first consider the time in
gral of Ė, which gives the total energy changeDE in one
collision with the wall. Inserting the analytical solution E
~33! in Eq. ~35! and integrating fromt52` to 1`, we get

DE52pS a

nD cosechS pvtX

4u DRe~ iqẼx expivtmax!.

~36!

Since Eq.~34! expresses the orbit in terms of the co
stants of integration rather than the initial conditions,
evaluate the phase-space average we change variables
the initial conditions x,px to u and s[utmax/tX so x
5(a/n)ln(usech 2s), px52u(ma/ntX)tanh 2s. The Jaco-
bian of this transformation is 4(ma2/n2tX), so, using Eq.
~32! in Eq. ~18!, the phase space average over wall scatte
events is transformed to
e

t

q.

-

rom

g

^^•&&5
8

p S ma

n2tX
D E

2`

` duQ~E24u2Eesc!

A2m~E24u2Eesc!
1/2E2`

`

ds•,

~37!

whereEesc is defined in Eq.~7! and Q(•) is the Heaviside
step function.

Using Eqs.~36! and ~37! in Eq. ~27! we have

D5
4

3p

q2^uẼxu2&

v2

uvu3

a
GS pvt tr

2 D , ~38!

where uvu[(2E/m)1/2 is the mean velocity in the field-free
region andt tr(E) is the transit time defined in Eq.~25!. ~Note
that D does not depend on the strength of the magnetic fi
in this model, only the scale length, because a change ocX
is equivalent simply to a shift in the origin of thex axis by an
amount of ordera/n.!

The functionG is defined as a one-dimensional integra

G~w![
3w2

2 E
0

1r cosech2~w/r!

~12r2!1/2
dr, ~39!

and is plotted as the solid line in Fig. 11. The function h
been defined so as to approach unity asw→0, as discussed
below in the context of the low-frequency limit,v!1/t tr .
The asymptotic behavior shown by the dashed line is d
cussed below in the context of the high-frequency limitv
@1/t tr .

A. Low-frequency „Fermi… limit

Fermi @20# was concerned with the collision of cosm
rays with relatively slowly moving gas clouds. In our pro
lem this corresponds to the low-frequency limit, in which
particle scatters off the magnetic field in a time much le
than the period of the applied field. This makes the argum
of G,w5pvt tr/2, small.

For uwu!1, we can approximate cosech2(w/r) in Eq.
~39! by r2/w2 over nearly the full interval. Evaluating th
integral we findG(0)51.

Thus, in the low-frequency limit,

D5~4/3p!~q2^uẼxu2&/v2!~ uvu3/a!. ~40!

FIG. 11. FunctionG(w) defined in the text~solid line! and the
large-w asymptotic approximation~dashed line!.
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This result may be understood as the Fokker-Planck di
sion coefficient̂ (DE)2&/2tcoll for particles oscillating in the
applied field with thequiver velocityṽ, given by

ṽ[
q^uẼxu2&1/2

mv
, ~41!

giving the typical energy step at each collision with the w
DE5muvuṽ. Taking as a typical time between wall collision
tcoll5a/uvu we recover, to within a factor of order unity, th
low-frequency energy diffusion coefficient above.

B. High-frequency limit

In the high-frequency limit, the particle oscillates ma
times during a collision with the magnetic field and w
would expect it to respond to the applied field adiabatica
gaining little energy.

For uwu@1 the dominant contribution to the integr
comes from a narrow boundary layer nearr51, in which
cosech2(w/r) may be approximated by exp(22uwu)exp
@22uwu(r21)#. This gives the asymptotic behavior

G~w!;3Apuwu3/2exp~22uwu!. ~42!

From the dashed line in Fig. 11 we see that t
asymptotic formula gives good agreement with the num
cally calculated result foruwu greater than about 1. We se
that the energy diffusion is indeed exponentially small in t
limit.

VII. DISCUSSION

In this section we give the magnetic parameters of
theory for a typical experimental device and make some
servations as to the possible implications of the theory
such experiments.

Multipolar magnetic cusp confinement has become a c
ventional method for reducing plasma loss on the cham
walls and keeping the inner plasma volume free from m
netic field@13#. This was used in the electron-cyclotron res
nance ~ECR! plasma formation experiment ECRIN~ECR
Ions Négatifs! @18,19#. In ECRIN, microwave argon and hy
drogen plasmas were excited in a cylindrical vessel of in
nal radius of about 6 cm and length 17 cm surrounded by
radially magnetized linear permanent magnets of alterna
polarity, maximum magnetic field strength 0.2 T and mic
wave cw power of 100–1000 W at a frequency of 2.45 G
was delivered at one end of the vessel.

The primary heating occurred near the microwave in
window, but it is of interest to consider whether collisionle
secondary heating of free particles is possible further do
the tube, which we can model by idealizing the perman
magnets as then56 linear magnetic dipole configuratio
used for illustration in the present paper in Figs. 1–4 a
Figs. 8–10. Usinga56 cm gives the length unit in thes
figures~see Sec. II C! asa/n51 cm.~In this paper we have
ignored collective effects, collisions and atomic process
all of which may be important in such experiments, so
use of the ECRIN parameters should be regarded as illu
tive only.!
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For ECRIN, the magnetic dipole strength was estima
to be aroundK51.531025 Tm2. Using this value in Eq.~7!
gives the escape energy for electrons asE esc

e '198 keV, and
that for singly charged argon ions asE esc

i '2.7 eV.
For electrons of energy 5 eV the transit time, Eq.~25!, is

t tr'7.5 ns, so that for the microwave heating frequency
2.45 Ghz the argument of the transit-time reduction factoG
in Eq. ~38! is w[pvt tr/2'182. This givesG(w)'5.5
3102155. Thus we see that nonresonant Fermi acceleratio
clearly not an important effect in such ECR experiments.
the other hand, with 1/t tr'133 MHz, this effect can be im-
portant in rf heating experiments.

Given the strong transit-time suppression of nonreson
heating, it may be of interest to consider the resonant hea
of the few free electrons penetrating deeply enough into
cusps to reach the ECR layer, and this could in principle
calculated using the quasilinear formalism developed in
paper.

However, we shall content ourselves here simply w
estimating the proportion of the ECR layer that is access
to the free electrons, as opposed to the trapped elect
discussed in Sec. III C. In the neighborhood of the ECR
gion, Eq. ~13! is satisfied only in the narrow cusp region
directed toward the magnets. We can thus Taylor expanc
to approximate this inequality by r uDuuvc(r )
<2(2mE/m)1/2 in polar coordinates, wherevc[uquB/m is
the electron cyclotron frequency (5v in the ECR layer!.

Summing these angular ranges over all the 2n cusps and
dividing by 2p gives the fraction of the ECR layer acce
sible to free particles. Approximatingr by a gives this frac-
tion to be (4/p)(vt tr)

21'1%. On this basis we would ex
pect nearly all the ECR power to be deposited in the trap
particles, with the free particles being heated through h
conduction from the trapped population and other such in
rect processes.

This paper has focussed only on the effect of chaos as
source of stochasticization. In reality, particle-particle co
sions may be equally or more important. Our collisionle
energy diffusion coefficient will still be valid as an additiv
contribution to the total energy diffusion coefficient provide
lmfp@a/n, for then most particles transit the high-field ed
region without suffering a collision. Elastic collisions in th
central region simply provide a further stochasticization a
do not affect our result provided the above inequality is s
isfied. Rare collisions within the edge region would provi
an independent additive mechanism for energy diffus
which might or might not dominate our collisionless mech
nism depending on the ratio of transit time to the period
the applied wave.

VIII. CONCLUSION

We have shown that in such strongly nonaxisymme
experiments as the multicusp geometry analyzed here, t
is a strong collisionless stochasticization process due to
chaotic nature of the unperturbed particle motion. This ju
fies the use of the random phase approximation for suc
sive kicks produced by coherent wave-particle interact
without having to invoke a nonlinear threshold for resonan
overlap, or collisions. Such systems cannot be analyzed
area-preserving maps, and thus fall outside the gen
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framework usually assumed for the analysis of rf and mic
wave heating in bounded systems@22#.

As an alternative to the Fokker-Planck approach for
riving the energy diffusion equation we have developed
variant of the quasilinear diffusion formalism based on av
aging the single-particle Liouville equation. This provides
general and efficient formalism for treating complex geo
etries.

We have applied the formalism to an exactly solub
model for nonresonant Fermi acceleration and found
transit-time correction factor that becomes exponentia
small in the high-frequency limit.
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Finally, we have illustrated these concepts using para
eters from a fairly typical electron-cyclotron heating expe
ment.
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