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Particle motion in a cylindrical multiple-cusp magnetic field configuration is shown to be higifdygh not
completely chaotic, as expected by analogy with the Sinai billiard. This provides a collisionless, linear
mechanism for phase randomization during monochromatic wave heating. A general quasilinear theory of
collisionless energy diffusion is developed for particles with a Hamiltonian of the FbgmH ,, motion in the
unperturbedHamiltonian H, being assumed chaotic, while the perturbattép can be coherent.e., not
stochastit. For the multicusp geometry, two heating mechanisms are identified—cyclotron resonance heating
of particles temporarily mirrortrapped in the cusps, and nonresonant heating of nonadiabatically reflected
particles(the majority. An analytically solvable model leads to an expression for a transit-time correction
factor, exponentially decreasing with increasing frequency. The theory is illustrated using the geometry of a
typical laboratory experimenfS1063-651X99)10311-§

PACS numbgs): 52.50.Gj, 05.45-a, 52.20.Dq, 52.55.Lf

. INTRODUCTION H, is integrable so that a canonical transformation to action-
- o o o angle coordinates exists. Then the unperturbed motion in
The quasilinear diffusion equation in its original form angle space is rectilinear, just as that in coordinate space in
(QLT1) was a Fokker-Planck equation describing theihe case of a homogeneous medium. This action-angle gen-
velocity-space diffusion of particles due to random scatteringgjization was carried out by Kaufm#] and by Hazeltine
by waves. In the absence of the waves the plasma was agt al.[5] to derive a quasilinear diffusion equatitn action
sumed to be infinite and homogeneous so that the unpegpace for wave-particle scattering in axisymmetric toroidal
turbed motion was rectilinear. The diffusion equation WaSmagnetic confinement geometriésg., tokamaks The for-
derived[1-3] from the Vlasov equation by solving for the malism has been used, for exampBl, to investigate the
perturbed part of the distribution function in the linear ap-effect of a sheared radial electric field on anomalous trans-
proximation and assuming the unperturbed distribution funcpot in a tokamak.
tion to be essentially constant over the time scale of wave- \yjith the development of the theory of Hamiltonian chaos
particle interaction, then substituting back into the full it has come to be realized that a quasilinear diffusion equa-
Vlasov equation and averaging over positi@r, equiva-  tion can also be derived in cases whéte represents the
lently, over the random phases of the waves effect of acoherentwave, provided the interaction &f, and
To put this formalism in a more general perspective, it iSy, produces a chaotic motion. We call this form of quasi-
advantageous to cast it in Hamiltonian form, with the particlejjnegr theory QLT2, and it is very useful in the theory of
motion in the absence of waves being described by an Untadio-frequency(rf) and microwave heating of plasm§a]
perturbed HamiltoniarH,. The total single-particle Hamil-  pecause this is typically done with coherent waves.
tonian is thenH,+ eH4, with the waves being incorporated  Again, H, is assumed integrable so that an action-angle
in the perturbation HamiltoniaH ;. In QLT1, all stochastic- transformation exists. In these theories {herturbationis
ity comes from the assumption of random phases in the asstill the source of chaos‘intrinsic stochasticity”), which
sumed broad spectrum of waveshty. The smallness pa- causes the action variables, constructed in the integration of
rametere expresses the assumption that the amplitudes ofl,, to perform the random walk described by the quasilinear
individual waves are small, so that the short-time-scale perdiffusion equation. Assuming the Hessian matrix
turbations to the distribution function can be derived usingazHO/api(?pj to be nonsingular, the coherent perturbation
linear, O(e), theory(hence the terminology “quasilinea)’”  must exceed a certain amplitude for global resonance over-
The only nonlinear effect is the long-time diffusion de- lap, and hence chaos, to oc¢8r10]. Thus, paradoxically, a
scribed by the diffusion coefficient, which @(€?). criterion for QLT2 to apply is that the system be sufficiently
It is not really necessary to assume an infinite, homogenonlinear.
neous plasma. The essence of QLT1 is the assumption that In the present paper we examine a third form of quasilin-
ear theory, which we call QLT3. This case is the complete
obverse of the original quasilinear diffusion problem: we
*Electronic address: robert.dewar@anu.edu.au now assume the unperturbed Hamiltonidly to be com-
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pletely nonintegrable, giving rise to strongly chaotic motiontonianH =3 (p2+ p§+x2y2) was at one time conjectured to

in the unperturbedsystem. The chaotic dynamics of the un- be completely chaotic like a Sinai billiard. Although Dahl-

perturbed Hamiltonian system then provides randomizatiomvist and RussberfiL7] disproved this conjecture by finding

and allows the application of a quasilinear formalism to de-2 stable periodic orbit, they found that the island of stability

rive the diffusion equation for the distribution function. surrounding this orbit was extremely small, so for practical
Of course, sincéd,, is not integrable, an action-angle rep- purposes one can assume that the energetically accessible

resentation does not exist. In fact, we assuthgeto be so phase space is covered ergodically in this system.

: ' ’ . In this paper we study a magnetic field configuration con-
§trongly cha_ouc that the unperturbed mc_)t|on covers esserEisting of a “picket fence” of infinite linear magnetic di-
tially the entire energy surfadd,=¢& ergodically, except as  51a5” producing multiple line cusps. This can be regarded as
restricted by integrals of the motion associated with any cony simplified model for a low-temperature plasma source, cre-
tinuous symmetries dfl ;. The goal of this paper is to deter- i

. e . ated using arrays of permanent magridi8,19. It is also a
g]a:ggrfrlae diffusion int’ caused by the time-dependent pertur- g e simple model, in which the unperturbed dynamics can
1.

X _ . be simplified analytically to a considerable extent by the use
Since the unperturbed motion provides the source of st

jee e : O6f complex variable theory.
chasticity (with no thresholgl we can, as in QLT2, assume | the |imit of a large number of dipoles the interior of the

the perturbatipn to be coherent. Thus the the.ory is applicablaasrna is essentially free of magnetic field and the unper-
to wave heating of plasmas in strongly nonintegrable magg,rheq motion is rectilinear in the interior region, while near

netic confinement geometries. the edge of the confinement region, a particle can be re-

The assumption of uncorrelated gyrophase in successig,tad over a range of angles. Thus we might expect the

passes through the resonance region is often made in theynfigyration to approximate a chaotic billiard problegim
derivation of a quasilinear diffusion equation to describe cy+pqo original Sinai problem the convex boundary was in the

clotron resonance heating of magnetically confined plasmagyterior of the domain, whereas the billiard analog of the
However, in simple confinement geometries, such as Magsresent example has an outer boundary that is convex except
netic mirrors,H, is essentially integrable owing to the exis- ¢, cusps, like the “bow-tie” billiard shown in Fig. 7.24)
tence of the adiabatic invariapt and another integral due to ¢ Ref. [16].)

symmetry, or a second adiabatic invariant. Lichtenberg and 1pe problem is also related to a model originally pro-
Lieberman[_ll] have analyze_d collisionless h_eating in S”Chposed by Ferm[20—22 for explaining the acceleration of
systems using area-preserving maps, and find the randorgagmic rays to the extraordinarily high energies observed. In
phase assumption to be valid only well beyond the nonlinéage Fermi model the cosmic ray particles move rectilinearly
threshold where the last invariant circle is destroyed and Chaéxcept during occasional collisions with moving magnetized
o_tic m_otiop becomes global. I_n our nomenclature, quasilineagq,,ds of gas, which cause diffusion in energy space. The
diffusion in these systems is an example of QLT2, nOtyresent model includes both the possibility of cyclotron-
QLT3. , , . . resonance heating in the mirrorlike cusp regions and non-
~ On the other hand, in systems with a null in the magnetiGegonant heating of particles reflected without penetrating
field u is not globally conserved and the situation is ratherdeeply into the cusps. The latter case is much closer to the
different from that in the much-studied mirror systems. Fororiginal Fermi problem and is the main focus of the paper.
instance, Yoshidat al.[12] have recently studied rf heating |5 Sec. Il we introduce the confinement geometry and
in a two-dimensional slab model with a neutral line, where - nperturbed Hamiltonian in detail, and in Sec. Il we analyze
conservation is broken. They find heating due to the onset g}, dynamics of this system and show it is indeed strongly
chaos at finite amplitude of the perturbing field. However,cnaotic for the class of particle§‘free particles”) that
their unperturbed system has two symmetry directions, anglayerse the central low-field region. However, in Sec.
thus theirH, is integrable, despite the breaking of the adia-||| p 3 we produce a counterexample to any conjecture that
batic invariant. Thus their model must be classified as ane motion is totally chaotic by finding a stable periodic or-
QLT2 case also. bit.

In systems with a null in the magnetic field and oolye In Sec. IV we introduce the wave-particle interaction. The
symmetry direction, howeverti is not in general inte- general quasilinear diffusion equation is derived in Sec. V.
grable. An important class of such systems are the magneti&n analytically solvable one-dimensional model of the mag-
cusp confinement geometries, which are much. used_m lowhetic field is used in Sec. VI to estimate heating of nonadia-
temperature plasma physics due to the ease with which theyagically reflected particles. The result is of the form ex-
can be created with arrays of permanent magii8sl4, pp.  pected from simple Fermi acceleration theory multiplied by a
146-15Q. In this paper we give evidence that they fulfill the transit-time reduction factor that becomes exponentially
criterion for systems of type QLT3 in that their unperturbedsma|| when the transit time is much longer than the period of
dynamics is almost completely chaotic. the applied field. The theory is discussed using typical pa-

We know from the work of Sina[15,16 that particle  yameters for permanent-magnet confinement experiments in
motion on a billiard table with a convex boundary is aggc v

strongly chaotic system due to the defocussing effect of each

collision with this boundary. In fact Sinai showed the motion Il. UNPERTURBED HAMILTONIAN
to be strongly mixing, so that ergodic theory could be ap-
plied. This suggests that cusp confinement systems, where
magnetic fields lie on surfaces that are convex toward the The behavior of a sufficiently dilute plasma can be ana-
plasma, are strongly chaotic. Indeed the four-cusp Hamillyzed on the basis of single-particle motion in magnetic and

A. Two-dimensional magnetic Hamiltonian



7402 R. L. DEWAR AND C. I. CIUBOTARIU PRE 60

electric fields made up of an externally imposed component 7
and an internally generated component produced by the col-
lective currents and charges from the combined effect of 6
many otherwise noninteracting particles. In this paper we 5
suppose that the self-consistent component is negligible and
analyze single-particle motion in an imposed magnetic field. 4

Consider the motion of a particle of chargand massn >
in a straight, infinitely long magnetic confinement system 3
with vector potentialA= ¢(x,y)e,, wherex, y, and z are
Cartesian coordinates amglis the unit vector in the direc- “
tion. The magnetic field iB,=dy/dy, B,=—d¢lix, B, 1
=0, so contours of the flux functiog(x,y) in any planez
= const define magnetic field lines. 0

The Hamiltonian igsee e.g.[23]) O 1 2 3 4 5 6 1

X
H :p_>2<+ p_§+ [Pz~ qi(x.y)]? & FIG. 1. Contours of the flux function for a typical cylindrical
"2m ' 2m 2m ' multicusp geometry produced by 12 line dipoles of alternating po-
larity.
where p;(i e{x,y,z}) are the canonical momenta, Hamil-
ton’s equations of motion beings=dHy/dp;, pi= 2nK[(¢\" (a\"]?
— Holdx; . Y=—2"lal \z
B. Multicusp flux function
| _ K + In 5” @
Assuming no currents present in the plasnjaobeys g Seehnini =11

Laplace’s equation. It is a standard result that two-

dimensional sqlutions of Lap_lace’.s equation can be CoNtt is clear from the first form tha® has poles at the rgh
structed by taking the real or imaginary part of any analytic;oots of —a2". In terms of polar coordinates and ¢ such

function of {=x+iy [24]. Thus we write that {=r expi 6, the poles are at=a, 6=m/2n+2l7, |
=0,1,...,2—1. Contours ofys (lines of forcg are shown
p(x,y)=Re¥ (), (20 in Fig. 1 for the cas@=6, with distances measured in units
of a/n.

whereW (x,y) is thecomplex flux function

For instance, a line curreriline magnetic monopojeat
{o is represented by the re@imaginary part of In(¢—¢p).

Although a magnetic monopole cannot be realized in na- We now consider the behavior ¢fin the region between
ture, a magnet can be modeled as a superposition of matwo magnets, which for definiteness we take to be those im-
netic dipoles. We consider a magnet that is long in the mediately above and below the positive regaxis. We ex-
direction, thin in thex andy directions, and magnetized in pand about the poinf=a, on the circle on which the mag-
the x direction so that it can be modeled by a line magneticnets are located, by setting=a+ &, where é=x—a+iy.
dipole. Such a linear dipole can be produced by differentiaAssuming| £|<a, we see from Eq(4) that
tion of ImIn(¢—¢p) with respect taxg.

Superimposing the flux functions fomdinear magnets of nK né
strength alternately- K and — K lying in a circular cylinder W~ ?SGCVE
of radiusa about thez axis we find for a circular multidi-
pole magnetic confinement system,

C. Near field and nondimensionalization

®

Thus, on thex axis ¢ peaks ak=a and it decays rapidly on
either side. Furthermore, we see that the scale length of the

n-1 ydn'+1 TR and y variation is nota but a/n. In Sec. llID 1 we shall
y=KIm > il 1 encounter Eq(5) again in the context of the asymptotic limit
n’=0 é’_aun g_aun n—oo,
Expanding¥ to second order im¢/a we find y=Re¥
21K 2\ (a\"t ~ iy {1—n?(x—a)?2—y?]/2a%} in the neighborhood of
- Re{ 5 Z (3 (a,0), where
Hereu,=exp(wi/2n) is the 4nth root of unity. The equiva- yx=nKla (6)

lence of the first and second forms can be verified by show-

ing that they have the same poles and residues and the saiisethe value ofy at this saddle point, the location of a

value at{=0. magnetic-field null. It is also useful to define a typical mag-
Thus, comparing with Eq(2), we see that the complex netic field By in the strong-field region via the relatidsy

stream function for a circular dipole picket fence is given by=niy/a.
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We term the energy of a particle with momentyos 0
located at this saddle point tlescape energy

(@)

In all numerical work and figures in this paper we nondi-
mensionalize by measuring distance in unitabf, mass in
units of m, time in units of the typical inverse angular cyclo-
tron frequency

: )

and charge in units dfg|. In these unitea=n, m=|q|= 7
= l//X: Bo: 1, andé'escz % .
Ill. UNPERTURBED PARTICLE DYNAMICS

A. Dynamics in complex notation

For a givenp,, the dynamics is a two-degree-of-freedom
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FIG. 2. A typical trapped-particle orbit in the magnetic field
shown in Fig. 1. The thick lines show the boundaries of the ener-
getically accessible regions.

(2) Partial confinement.For £>&.., the curves|y|
=(2m&)Y?|q| are disjoint and thus particles can escape
through the “mountain passesi(see Fig. 1 between the

autonomous Hamiltonian system which can be compactiynagnets.

written using complex notation as

1

Z:Epp 9

b= [P~ aReW(OIY' (O],

where the prime onl means the derivative with respect to
its argument, * means complex conjugate, apg=p,
+ipy.

B. Integrability and effective potential

BecauseH, is independent of,p, is a constant of the
motion. Also,H, itself is a constant of the motiofd y=¢&,

where the constarf is the total energy. However, the ab-

In either case the particles are free to traverse a large
region including the origin, like particles rolling on a billiard
table[in case(ii) it is a billiard table with pockefls We refer
to particles on such orbits deee particles to be contrasted
with the trapped particles discussed in the next section.

C. Trapped particles

For p,#0 a new class of orbit arises, thepped par-
ticles. This occurs when the energy is less than the value of
Ve at the origin, i.e., wher€< p§/2m, for then the low-
magnetic-field central region is energetically inaccessible
(see Sec. Il Dand the particle must be confined in the edge
region near the magnets, as illustrated in Fig. 2.

Because deeply trapped particles are always in a region of
strong magnetic field, their dynamics can be analyzesb,
e.0.[23], pp. 21 and 2Rby decomposing the motion into that
of the guiding center, with velocity=vB/B+ drifts, and a
gyromotion with velocityv, in the plane locally orthogonal

sence of a third integral of the motion means the system i§; g The adiabatic invariant
not integrable. Thus we must resort to numerical integration

to investigate the nature of the unperturbed orbits.

Before proceeding to a discussion of the numerical re-
sults, however, we observe that some qualitative understand-

~mv?
“="B

(10

ing of the motion can be found by determining the bounds of

the motion implied by the constancy éf,. Inspecting Eq.
(1) we see that the terMq4= (p,— q¢)%/2m in H acts as an
effective potentialn which the particles move. The motion
in the (X,y) plane is thus bounded by the curnsq(Xx,y)
=¢&. Note thatV =0, with equality occurring on the con-
tours ¢=p,/q. Also, sincey vanishes at the originygg
= p2/2m there.

In the casep,=0, the curvesVggy(Xx,y)=const are just
level curves of/¢/|. There are thus two cases.

(1) Perfect confinement.E<&., the curve |y
=(2m&)Y?|q| encloses the origitthough it has cusps at the
magnet$ and there is thus no leakage of particles with
=0 through the dipole picket fence.

is conserved to high degree of approximation, providing an
approximate third integral of the motion. The unperturbed
dynamics of this class of orbit is thus quasi-integrable, not
chaotic, implying that we must use quasilinear theory of type
QLT?2 to derive a diffusion equatiofi.e., heating will occur
only beyond a nonlinear amplitude threshol€yclotron
resonance heating in mirror geometries has been much dis-
cussed in the literaturg¢14], pp. 413—422and we shall not
discuss the heating of the trapped patrticles in this paper.

D. Free particles

For a given energy¥ and conserved momentupy, the
energetically accessible regids the set of pointsx,y) for
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— 2 4 FIG. 4. Intersections of an orbit with the Poincaserface of
sectiony=0 described in the text.

orbit. It is seen that the orbit appears to fill the energetically
/1 accessible phase space ergodically, indicating strong chaos.
However, the interaction with the field near the bounding
curve is not specular reflection with a zero radius of curva-
FIG. 3. A typical free-particle orbit in the magnetic field shown ture, so our magnetic cusp confinement system is not pre-
in Fig. 1, with initial conditions as described in the text. cisely analogous to that studied by Sinai. In fact, studying
Fig. 3 we see that there are two qualitatively different kinds
which there existp, and p, such thatHo(X,y,py,Py,P,) of reflection event—approximately specular reflection with a
— & From Eq.(1) we get the inequality small-but-finite radius of curvat.ure,.and “st|cky_ reerctlons_”
near the cusps, where the particle is temporarily trapped in a
one-sided mirror field and oscillates several times before re-
flection. As explained below, we call these nonadiabatic and

' . . .. adiabatic reflections, respectively.
We define the free particles as those for which the origin P y

is energetically accessible. Thus, sing€,0)=0, Eq. (11

[p,—ay(x,y)]*<2mé. (12)

implies that free particles are those for which 1. Scattering analysis of reflection, large
In order to make the reflection process a precisely defined
p2<2mé. (12)  eventwe go to the large-limit, in which the spacing be-

tween the magnetsra/n, and the scale length of magnetic

The total region accessible to free particles is the set Opeld variation,a/n, become small compared with the radius

(x,y) for which the ranges g, defined by Eq(11) and Eq. ?etssmSveeV\é?\i?tr?hlgtg:?s'ted in dynamics near the wall of mag-
L T . , gin to the saddle pointéata by de-
(12) are not disjoint. This gives the condition fining £=¢—a, just as in Sec. Il C. Again Ed5) applies at
leading order, but this time its region of validity extends
law(x,y)|<2(2me)*2 (13)  beyond the region of the magnetic null to include the high-
field regions near the magnethe only requirement being
This inequality being satisfied, the intersection of the range$é|<a).

defined by Eqg. (1) and Eq. (12 is [q¢ We now take Eq(5) to be theexactcomplex flux func-
—(2mé)*2 (2m&Y? for qy>0, or [—(2m&Y2qy  tion for the model problemof an infinite line of magnets
+(2mé) Y23 for qy<0. (treatingn as an arbitrary parameter, which is scaled out in

A typical trajectory for a free particle with energy well the nondimensionalization defined in Sec. I)L B reflection
below the escape energy is shown in Fig. 3. In this gase eventis now precisely defined as a scattering process, in
=0, and the initial conditions arg,=y,=0, py=0.04, which a particle impinges from Re&= —o (where the orbit

Pyo="0.05, giving&€=0.002 05. is asymptotically a straight linereflects off the magnetic
We see that the energetically accessible region is bounddikld of the magnets, then retreats back toward Re- .
by a series of curveshown as thick linesjoining in cusps In Fig. 5 we illustrate some typical reflection events for

at the magnets. These bounding curves are convex towaghrticles with initial momentunp,,=0.06, p,,=0, p,=0,
the confinement region, except at the cusps, where the magiving energy€=0.0018. For small initial values of, y,
netic field goes to infinity so that no particle can penetratethe reflection is approximately specular, buyygapproaches
Also we see that the motion of the particle well away from /2 (the height of the first magnet above thaxis), the orbit
the bounding curves is approximately rectilinear so that theindergoes more and more oscillatidggrationg before be-
system does indeed appear like a physical realization of ag reflected back.
Sinai billiard systenj15]. Clearly, foryy,~ /2 we can use adiabatic invariant theory
Although the orbit in Fig. 3 looks chaotic, a better test for (cf. Sec. lll O to treat the process of reflection in the mirror
chaos is to do a Poincasairface of section puncture plot, as field in the throat of the cusp field, whereas fgy~0 the
shown in Fig. 4 for a particle wittp,=0 and energy€  particle does not complete even one gyration about the mag-
=0.0017 started near the periodic orbit described in Semetic field, so the adiabatic invariant is not defined on any
Il D 3. The Poincaresurface of section is>0,y=0 and its  part of the orbit. In order to determine on which part of any
images under the symmetry operatipr>exp(#/6){. Dots  given orbit x is approximately conserved, we compute the
indicate both upward- and downward-going passes of theyclotron frequencyf.=wJ/27 at each point on the orbit,
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FIG. 5. A set of nine orbits, incident in the direction normal to
the line of magnets, with different “impact parametey,. The
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FIG. 7. Adiabaticity parametea ¢/27 vs impact parameter
times 2fr for orbits incident at 20° to the normal with energy 0.01
(solid ling) and very low energie&dashed ling

such that the orbits have initial values=X,, y=Yy+VYo,

thick line shows the boundary of the energetically accessible regiofVhere Xo is an arbitrarily large negative constant and the

The origin of thex axis has been shifted to lie on the line of mag-
nets.

wherew(t)=|q|B(t)/m, and compare it with the time-rate-
of-change of IrB.

Suppose that the inequalify> B/B holds over the inter-
val t;<t<t, and is violated outside the interval. Adiabatic

invariance theory applies during this interval, provided the
particle has enough time to execute at least one gyroorbit. T
determine the latter point, we calculate the total gyrophas
change over the interval in which adiabatic invariance poten

tially applies,

ty
wdt.
ty

Ap= (14)

Then we define aradiabatic reflectionas one for which
A¢pl27>1 and anonadiabatic reflectioras one for which
Apl2m<1.

Figure 6 shows this adiabaticity parameter for the case of

constantY, is chosen so that,=0 corresponds to an orbit
symmetric about the& axis)

It is seen that the adiabatic region is much reduced in the
low-energy case, and has virtually disappeared in the high-
energy case. At angles of incidence greater than 25°, both
high- and low-energy particles reflect nonadiabatically for all
impact parameters. The ratio of the solid angle occupied by
the cone of angles of incidencg<25° to the cone of all
Bossible angles of incidence;<90° is about 0.093. Thus
we conclude that considerably less than 10% of particles
reflect adiabatically.

" The low-energy limit referred to above is defined by ob-
serving that the lower the incident energy, the larger the
value of —Re¢ at which the particle reflects. Thus, in this
limit we can replace sechg/a) by 2 expé/a) in Eq. (5)

and define the low-energy approximation as the result of

Wiow=2¢x eXF{ (15

normal incidence, as depicted in Fig. 5. Two values of en-

ergy are shown, a relatively high energy0.01 and the
low-energy limit E&—0 (see below. Reflection is nonadia-
batic for roughly 60% of particles in both cases.

Figure 7 shows the dependencelod/27 on impact pa-
rametery, for particles incident at an angle of 20° to the
normal in thex-y plane, and wittp,=0. (Hereyy, is defined

A¢
2r
2

1.75
L5
1.25
1
0.75
0.5
0.25

2 Yo
125 15175 2 =«

025 05 075 1

FIG. 6. Adiabaticity parameteA ¢/27 vs impact parameter
times 2fr for normally incident orbits with energy 0.0%olid line)
and very low energiedashed ling

replacingW¥ with
ng)
2l
where ¢y is defined in Eq(6).

The dynamics in this limit exhibits an important scale
invariance: if we displace the orbit in thedirection using
the transformatio= ¢’ + h, whereh is a real constant, then
the flux function changes by a constant factdfiy,(&)
=exphha)V,,(¢'). Inspecting Eq.(10) we see that the
transformationp=expnh/a)p’, t=exp(—nh/a)t’ leaves the
form of the equations of motion invariant. The energy is
transformed according t6=exp(hha)e’. Clearlyyy is in-
variant and it is also easy to show from E@4) thatA ¢ is
invariant under this scaling transformation. Thus we have the
result thatin the low-energy limitthe functionA ¢(y,) is
independent of energy

2. z motion

Although our idealized system is infinitely long, any real
system will be of finite length and it is therefore of interest to
enquire as to the rate of drift in the direction. Figure 8
shows the motion iz for the case shown above. We see that,
for the casep,=0, the motion appears to be a random walk
with no secular drift.
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—1 FIG. 10. Poincaresection transverse to the dodecagonal orbit

showing several satellite orbits which appear to be on invariant tori.
FIG. 8. Thez component of the orbit shown in Fig. 3.
Figure 10 shows iterates of the mayp f,)— (x’,p,) found
3. Periodic orbits by calculating the crossing timewith the 8= =/6 line as
As for the four-cusp system of Dahlqvist and Russbergd,escnbed abpve, then calculating =Re exp{-in/6)(1),
[17], we show that oun=6 example is notompletelycha-  Px = Re expCimB)p (1).

otic by showing numerically that there is at least one stable F|g_ure 10 .ShOWS an island of regular motion In a vast
orbit surrounded by invariant tofiKolmogorov—Arnol'd— chaotic sea—if we start much beyond the last orbit shown,

: : the orbit rapidly moves far away from the periodic orbit. For

Moser (KAM) surface$ which make a small region around . . . - :
the periodic orbit dynamically inaccessible to the chaotic Or_example, the chaotic orbit shqwn in the Po'”q“‘"‘%" Fig. 4,
bit filling most of the energy surface. started atX,y)o=(3.02,0), withp,=0 an_d Py adjgsted to .

We expect the most stable orbit to be the one with thddive the same energy as that of the periodic orbit plotted in

: . Fig. 9.

highest symmetry allowed by the system, i.en;f2ld sym- N : : .
metry, since this is the smoothest orbit, least like the trajec- The orblt_s n F'g' 10 appear to I|e_on Invariant curves _that
tory of a billiard ball. This is illustrated in Fig. 9 for the case are topologically circular, being the intersection of invariant
n=6, p,=0, with the orbit passing through«{y)o=(3.0) tori with the surface of section. The quasitriangular shape of
The (,:orzresp,onding momentum required to Closoe the7 orbit i%he outer orbits is due to the existence of three unstable pe-
(Py.Pv)o=(0,0.04925), giving an energg=0.001 700 82 riodic X points which define the separatrix between regular
anxd’ aypoeriod’2'8 96 Bécause of its 12-fold syhmetry we cal nd chaotic motioricf. the bifurcation with branching ratio
this the dodecagonal orbit. /3Sm F'g.' ](?hOf [zﬁ])' ¢ initial val ¢ ¢

To investigate the stability of such an orbit we linearize canning through a range ot iniial values>giso as to

about the orbit and calculate the eigenvalues of the matriY@"Y the energy, we find that for all€’less than the escape
evolving a neighborhood of the phase-space paigt fyo) energy&es. (and somewhat beyondhe dodecagonal orbit is

in thex>0, y=0 half plane to its intersection with the next staple. We have not done an exhaustive study of other pe_ri—
surface of ’section that is equivalent under the symmetry o odic orbits, but have established that the four-fold-symmetric
eration Z—>exp(/6)¢. [The crossing time is found numeri- square” orbit is unstable below an energy of about 0.1, but

; ' . tabilizes above this value.
cally by searching for the first zero of arg exjp/6)(t).] S . - .
For the case shown in Fig. 9, the eigenvalues are The existence of a stable periodic orbit shows that the

0,541 62-0840624, whih I on the uni crce in the |10 50 CONnEment syt conpietely chaotc
complex plane, indicating stability. ' y

: b : . . small. For instance, the area occupied in xip, plane by

This stability is confirmed more graphically by the Poin- . C ; 5 X X
careplots in Fig. 10 for some neighboring orbits on the samethe island shown in Fig. 1.0 is abouk70 °, com.pared W'th
he energetically accessible area of the Poincsgetion,

energy surface as the dodecagonal orbit shown in Fig. %‘[me—q2¢2(x,0)]1’2)dXQ0.37, L., four orders of magni-

tude smaller. Even a very small amount of extrinsic stochas-
Y ticity (e.g., small-angle collisions with other partidlesill

N easily destroy such small islands of stability.
Thus we conclude that, for practical purposes, the as-
’ sumption of complete chaos in the free-particle dynamics is
well justified, and hence assume that any orbit covers its
/ energy surface ergodically.
2 Q o
IV. WAVE-PARTICLE INTERACTION MODEL

For a given wavelength\, of the incident wave, the ratio
N (a/n) tends to infinity asn—. Hence we consider the
long-wavelength limit, in which the wave-particle interaction
is via the uniform, oscillatory electric field E

FIG. 9. Stable periodic orbit with 12-fold symmetry—the =Re(E expiwt), whereE is a constant complex vector. On

“dodecagonal” orbit—as described in the text. The thick line the other hand, we assume> w, ., wherew,, . is the elec-
shows the boundary of the energetically accessible region. tron plasma frequency, so that the oscillatory part of the

/
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electrostatic potential can be ignored. Thus the electric fieldveraging, but a phase-space average over the unperturbed

is taken to be produced by the vector potentidl  energy surface: for arbitrary phase-space functiéxp,t),

=R i (E/w)expiwt]. varying on both the fast time scale * and a slowexdiffu-
In reality, uniformity of E applies only during one wall- Sion time scale, we defing(g))(&,p,,t), varying only on

scattering event, which occurs over the scale lermth, the slow time scale, by

whereasE can be different at different points on the picket

fence if A is comparable witla. In this paper we consider a 1 ) )

model system in whiclE is strictly constant in space, but we ()= N r<ad Xf d"pS(E—Ho(x,p))(g(x,p;1)),

model the real situation by choosirtg from a random en- (18)

semble of values with probability distribution matching the

distribution of field amplitudes and phases actually encounwherer =(x2+y?)"2 d?x=dxdy, d’p=dp,dp,, & denotes

tered on the cylinder=a. We also assume the distribution the Diracé function, and the normalizing factov(&,p,) is

of initial phases to be uniform, which means that #re  defined by

semble averaging operatdr ) automatically includes phase

averaging i ) )
The model Hamiltonian determining the full particle dy- N= r<ad x| d*po(€—Ho(x,p)). (19)
namics is thus taken to bé,+H,, whereHg is given by Eg.
(1), and The result of applying thiiprojection operation is a func-
tion only of £ andt, so that{f,Ho}=0 and hence the aver-
H,=— iRe[i (p—que,) - E expiwt], (16) aged part of the distfibution functi_d'ni; invariant under_ thg
e unperturbed dynamics. The projection of the distribution

. ) ) . o function onto the energy surface using the averaging opera-
with €, being the unit vector in the direction. The above o js an extreme form of phase-space coarse graining. Ow-
form for H follows simply by expanding{—gA)*2m and  ing to the highly chaotic nature of the unperturbed dynamics
dropping the term quadratic i as it has no spatial depen- we assume that this coarse-grained distribution function re-
dence and thus does not affect the dynam(iésve had not laxes to a function of the constants of the unperturbed mo-
takenE to be constant in space, it would be necessary tdgion, £ andp,, on a time scale much faster than the quasi-
retain this term to include ponderomotive force effects. linear diffusion time scale. We assume all particles to be

Note thatH, produces an oscillatory correctieti, /dp, confined, so that the region of phase space defined by

to the velocityx that is independent of position, whereas the = const, p,=const is bounded within<a.

oscillation inp is localized around the edge region due to the APPIYINg the operatior{(-)) to Eq. (17) we have
localization of . Thus p is nonoscillatory in the middle

region whereys is negligible. This is a consequence of our atf_+<<{7,Hl}>>=O. (20
choice of gauge for representing, which automatically 5
gives an oscillation-center representatifi8], p. 47 in gen- Writing the Poisson bracket in the forn{f,H}

eralized momentum space. The localizatiorpdb the edge =4, - (TﬁpH 1)~ dp- (foyH,) and integrating by part&@ssum-
region where the particles are reflected is desirable since thiag the particle confinement is good enough that the bound-
is the region where irreversibility is introduced—in the ary contribution can be ignorg¢dave find
middle region the particles simply respond adiabatically to
the high-frequency field. _ 19 . 1 9 .

It is possible also to remove the oscillation in the gener- <({f,H1}))=N—5(J\/<(f5>>)+ N—(/\/«fpz»),
alized position coordinate in the middle region, so as to com- J Pz

; . . . : (21

pletely localize the interaction to the edge region, by making

a canonical transformation to oscillation-center variable%hereg is the rate of change in the energy integral of the

[26]. However, as we are interested in the diffusion in en- ()= )
ergy, not position, we have not found this transformation tounperturbe_d sy;te (t)-_HO(X(t)’p(t))’ along the  per
be useful. turbed orbit. Noting thaHy={H,Ho+H}={Hg,H4}, we

see that

V. QUASILINEAR DIFFUSION

. . R £={HoH1}. (22
The Vlasov equation for the single-particle distribution
function f(x,p,t) can be written Also, p,={p,.Ho+H,}={p,,H;} [which vanishes for our
simple interaction term, Eq16)].
of+{f,H}=0, 17 Subtracting Eq(20) from Eq. (17) we also have
where the Poisson brackgft,H}=d,f - d,H—d,f- 9,H. oF+1T Hol = — [f,H,} + O(E?). (23)

We decomposé into a noanLEtuating part_ and a fluc-
tuating remainderf. We definef=((f)) where((-)) in-  Linearizing Eq.(23) and solving by integration along the
cludes not only an average over the wave phase via ensemhbl@perturbed trajectories from an initial timeT, we have
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Txp)=FX(=T).p(=T),~T)
J'td/(:c:/é’f_g/ [y 'Iaf_g/ [y
- . t é‘_g( Pzt )+pza_pz( vpz't) :
(24)

In calculatingg’ =£(t) using Eq.(22), the right-hand side is
to be evaluated at the poit(t’),p(t’)) on the unperturbed
phase-space trajectory that passes through)(at timet,
and similarly forp,(t’) if an interaction model is used for
which it is nonvanishing.

We now observe that, for largg T(x',p’,t’)(t'=—T)
becomes decorrelated frofigt) andp,(t) and thus does not
contribute to the averages on the right-hand side of(Eg).

R. L. DEWAR AND C. I. CIUBOTARIU

PRE 60

initial or final values as independent variables because the
Jacobian of the transformation is unigreservation of phase
space volumeand Hy is an invariant of the unperturbed
motion. ThusC(7) is an even function, which fact we used
to extend the upper limit of the integral in E@7) to infin-
ity. We can also use time reversal invariance to show
C(glpZ!T):C(gl_pZ!_T):C(g!_pZIT)'

We end this section by calculating the heating rate due to
Fermi acceleration. First we define the total plasma energy
per unit length in thez direction,

u<t)zf:dgjldpzf\/gf 29

Differentiating U with respect to time, using Eq26) and

The decorrelation time is the duration of one wall-scatteringntegration by parts we find the rate of power deposition into

event, which is of the order of theansit time

(&)=

Alv] (25

of a free particle with spedd|=(2&/m)Y? through the scale

length a/n of the magnetic field variation. Thus, assuming

T>r,, we can set the initial value terf(x’,p’,t')(t' =
—T) to zero without significant error.

Also, if x(t) is in the wall-interaction region, wheand
p, are significant, therx(—T) is far from the wall so&
(—=T) and bz(—T) are negligible(becausey is essentially
zero there—see the discussion at the end of Sec. Tkus

we can, to a very good approximation, extend the lower limit

of the integral in Eq(24) to — .
WhereasT is assumed large with respect 19, we as-

the plasma due to reflections from the confining edge mag-
netic field under the influence of an electromagnetic wave

. = (e af
U(t):—fo dsfiwdpzj\/Da—g. (30)

We have assumed thaf/J€ vanishes at an energy less than
or equal to the maximum confined energfu//f(/Zm dis-
cussed in Sec. Il C so that we can ignore boundary contribu-
tions.

VI. ONE-DIMENSIONAL MODEL

We saw in Sec. Ill D 1 that most particles reflect nonadia-
batically in less than one gyroperiod, and thus should not be
sensitive to the details of thg variation of ¢ (i.e., subtle

sume it to be small with respect to the characteristic evoluresonance effects should not be important for most parjicles
tion time for the distribution functior. (That is, we assume This suggests we estimate the effect of nonadiabatic reflec-
the wave to be of sufficiently low amplitude that it takes tion by using a one-dimensional model Hamiltonian obtained
many wall-interaction events for significant heating to oc-PY replacingy(r,6) in Eq. (1) with an axisymmetric flux
cur) Thus we can also make thdarkovian approximation function, #(r) (cf. the one-dimensional model used by

thatf_(S’,p; ,t") can be moved outside the integral in Eqg. Yosrgldaettﬁl. [12&)' Thfe cor;s_etrvatlc;_n of fﬂgﬁ anguI?r mo—f
(24) with negligible error, mentump,, then allows formal integration of the equations o

- . . motion by the method of quadratures.
Subs_tm{tmg Eq(24) in E_‘?-(Zl) a.nd then Eq@) we find Althou)éh such a one—gimensional flux function violates
(@ssumingp,=0) thequasilinear diffusion equation Laplace’s equation, and therefore would require a plasma
- current to produce it, this fact is irrelevant to the single-
of 1 9 of particle dynamics. By suitable choice ¢{r) we can model
gt Na_g(wﬁ_;) (26) the gross radial co'nfinement propertigs of the ' tW(_)-
dimensional flux function. The main loss in the physics is
whereD(&,p,) is the energy diffusion coefficient, defined by that (r) produces no radial component Bf and hence no
interaction with~E,9. But if we assume perfectly conducting
wall boundary conditionsE must be purely radial at the

DE%J',wC(T)dT’ @7 vacuum vessel wallassumed just inside the array of mag-
netic dipoleg so~E0 (andE,) can be assumed to be small in
with the two-time correlation functio@(&,p,,7) the interaction region anyway.
We further simplify the reflection dynamics by going to
C(T)E«'g(t_T)'g(t))):(('g( T)'g(o)», (28) the largen limit, so that the dipoles become a linear array

and we can use Cartesian coordinates as in Sec. Il D 1.
where the second form follows from the fact that, because oAlso, Figs. 6 and 7 indicate that the low-energy approxima-

the average stationarity of the dynamical systéhdepends
only on the time differencer=t—t’. Also note that the
projection operatiok - }), Eq.(18), can be done using either

tion, Eq. (15), is good for nonadiabatic reflections. In this
limit the field strengtiB is independent of, so we define the
equivalent one-dimensional flux functiaf(x) as that which
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gives the same field streng®(x). That is,B= |V (&)| L0 G
=y’ (x), where )
0.8
nx 0.6
P(X) =2y exp —|. (3D :
a
0.4
(In the above we have shifted the origin of thaxis to lie on 0.2
the same line as the array of dipoleds a final simplifica-
tion of the unperturbed dynamics we evaluBteonly at p, 05 1 15 2 25 13
=0. That is, we consider only unperturbed orbits having the
constant of the motiop,=0. FIG. 11. FunctionG(w) defined in the textsolid line) and the

In the largen limit the boundary region where is not ~ largew asymptotic approximatiofdashed ling
small makes negligible contribution to E(.9) and thus we

find the normalizing facto/V to be independent of energy, 8 ma| (» duB(E—4uE.) (=
CN==13 > 2 1/2f ds-,
N=2772a2m. (32) ANt - 2m(5_4u 568() - (37)
The equations of motion Eq10) can be integrated ex-
plicitly to give where &g is defined in Eq(7) and O(-) is the Heaviside
step function.
a 2U(t—tra) Using Egs.(36) and(37) in Eq. (27) we have
x(t)=<ﬁ)ln<usech7—), (33
X
4 GBS P [ mor
mal  2u(t—t,.) =35 5G| (39)
Py (t)=—2u — tanhT—, (34) T  w a
X X

where 7y is defined in Eq(8) and the constants of integra- whgre|v|s(28/m)l’2 is the.m.ean vel'ocity. in the field-free
tion areu=exphx,a/a) andt, .. Inspecting Eq(33) we  region andr,(&) is the transit time defined in E5). (Note
see thatx,y is the maximum value ok attained over the thatD does not depend on the strength of the magnetic field
entire orbit, andt,,, is the time at which this point is in this model, only the scale length, because a changlgof

reached. is equivalent simply to a shift in the origin of thxeaxis by an
Assuming a perfectly conducting vacuum vessel we sea@mount of o.rdela/.n.) . _ _ .
E,=E,=0. Then, from Eq. (16), H,= The functionG is defined as a one-dimensional integral,

— (g/mw)Re(ip,E, expiot) and we have the simple expres-
sion for the instantaneous power transfer to a particle, Eq. 3w? [1p cosech(w/p)

(22), G(W)ET 0 (1_p2)1/2 dp, (39)

. . oHy g~ . .
&= PG, T - RAIEx(t)expiwt]. (39 and is plotted as the solid line in Fig. 11. The function has

been defined so as to approach unitynas 0, as discussed
In evaluating the diffusion coefficient using EQ7), itis  below in the context of the low-frequency limity<1/7,.
convenient first to commute the time integration with theThe asymptotic behavior shown by the dashed line is dis-
averaging operation, so that we first consider the time inteeussed below in the context of the high-frequency limit
gral of & which gives the total energy chandef in one  >1/7.
collision with the wall. Inserting the analytical solution Eq.

(33) in Eq. (35 and integrating fromi= —« to +, we get A. Low-frequency (Fermi) limit

ToTy ~ Fermi [20] was concerned with the collision of cosmic
cosecl(u )Re(inX expi wt ) - rays with relatively slowly moving gas clouds. In our prob-
4u lem this corresponds to the low-frequency limit, in which a
(36) particle scatters off the magnetic field in a time much less
Since Eq.(34) expresses the orbit in terms of the con- than the period of the applied field. This makes the argument
stants of integration rather than the initial conditions, to°f G:W=mw7/2, small. _ .
evaluate the phase-space average we change variables fromFOr |WL<12, we can approximate cosé¢iv/p) in Eq.
the initial conditions x,p, t0 U and S=Utya/7 SO X (39) by p /w' over nearly the full interval. Evaluating the
—(a/n)In(usech @), p,=2u(ma/nry)tanh. The Jaco- Integral we findG(0)=1. o
bian of this transformation is 4fa®/n?ry), so, using Eq. Thus, in the low-frequency limit,
(32) in Eq. (18), the phase space average over wall scattering
events is transformed to D =(4/3m)(q*(|E >/ w?)(|v|%/a). (40)

a
AE=— 77(—
n
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This result may be understood as the Fokker-Planck diffu- For ECRIN, the magnetic dipole strength was estimated
sion coefficient( (A E)?)/27, for particles oscillating in the to be aroundK =1.5x 10 ® Tm?. Using this value in Eq(7)

applied field with thequiver velocityv, given by gives the escape energy for electron§§§~ 198 keV, and
that for singly charged argon ions &§,~2.7 eV.
5 q<|EX|2>1’2 For electrons of energy 5 gv the transit tjme, E2p), is
VE— (42 v~ 7.5 ns, so that for the microwave heating frequency of

2.45 Ghz the argument of the transit-time reduction faGor
giving the typical energy step at each collision with the wall"” E9i5g38) Is w=mwr,/2~182. This givesG(w)~5.5
Af= S Taki ical time b Il collisi X10™**°. Thus we see that nonresonant Fermi acceleration is
=mv|v. Taking as a typical time between wall colliSions |64y not an important effect in such ECR experiments. On
7eo1 = a/|v| we recover, t.o W'.th'n a fagtpr of order unity, the the other hand, with &[~133 MHz, this effect can be im-
low-frequency energy diffusion coefficient above. portant in rf heating experiments.
_ o Given the strong transit-time suppression of nonresonant
B. High-frequency limit heating, it may be of interest to consider the resonant heating

In the high-frequency limit, the particle oscillates many Of the few free electrons penetrating deeply enough into the
times during a collision with the magnetic field and we cusps to reach the ECR layer, and this could in principle be
would expect it to respond to the applied field adiabatica”y,calculated using the quasilinear formalism developed in this
gaining little energy. paper. _ _

For |w|>1 the dominant contribution to the integral ~However, we shall content ourselves here simply with
comes from a narrow boundary layer ngar 1, in which ~ estimating the proportion of the ECR layer that is accessible
cosecR(w/p) may be approximated by exp@w|exp O the free electrons, as opposed to the trapped electrons

[—2/w|(p—1)]. This gives the asymptotic behavior discussed in Sec. Il C. In the neighborhood of the ECR re-
gion, Eg.(13) is satisfied only in the narrow cusp regions
G(w)~3\/;|w|3’2exp(—2|w|) (42) directed toward the magnets. We can thus Taylor exp@and

to approximate this inequality by r|A6lod(r)
From the dashed line in Fig. 11 we see that this=2(2m&m)*?in polar coordinates, where =|q|B/m is
asymptotic formula gives good agreement with the numerithe electron cyclotron frequency=(w in the ECR layer.
cally calculated result fojw| greater than about 1. We see  Summing these angular ranges over all tiec2isps and

that the energy diffusion is indeed exponentially small in thisdividing by 27 gives the fraction of the ECR layer acces-
limit. sible to free particles. Approximatingby a gives this frac-

tion to be (4#)(wy,)  t~1%. On this basis we would ex-
pect nearly all the ECR power to be deposited in the trapped
particles, with the free particles being heated through heat
In this section we give the magnetic parameters of theonduction from the trapped population and other such indi-
theory for a typical experimental device and make some obrect processes.
servations as to the possible implications of the theory for This paper has focussed only on the effect of chaos as the
such experiments. source of stochasticization. In reality, particle-particle colli-
Multipolar magnetic cusp confinement has become a consions may be equally or more important. Our collisionless
ventional method for reducing plasma loss on the chambeenergy diffusion coefficient will still be valid as an additive
walls and keeping the inner plasma volume free from mageontribution to the total energy diffusion coefficient provided
netic field[13]. This was used in the electron-cyclotron reso-\ > a/n, for then most particles transit the high-field edge
nance (ECR) plasma formation experiment ECRIRECR  region without suffering a collision. Elastic collisions in the
lons Negatifs) [18,19. In ECRIN, microwave argon and hy- central region simply provide a further stochasticization and
drogen plasmas were excited in a cylindrical vessel of interdo not affect our result provided the above inequality is sat-
nal radius of about 6 cm and length 17 cm surrounded by 1sfied. Rare collisions within the edge region would provide
radially magnetized linear permanent magnets of alternatingn independent additive mechanism for energy diffusion
polarity, maximum magnetic field strength 0.2 T and micro-which might or might not dominate our collisionless mecha-
wave cw power of 100—1000 W at a frequency of 2.45 Ghzism depending on the ratio of transit time to the period of
was delivered at one end of the vessel. the applied wave.
The primary heating occurred near the microwave input
window, but it is of interest to consider whether collisionless
secondary heating of free particles is possible further down
the tube, which we can model by idealizing the permanent We have shown that in such strongly nonaxisymmetric
magnets as th@=6 linear magnetic dipole configuration experiments as the multicusp geometry analyzed here, there
used for illustration in the present paper in Figs. 1-4 ands a strong collisionless stochasticization process due to the
Figs. 8—10. Usinga=6 cm gives the length unit in these chaotic nature of the unperturbed particle motion. This justi-
figures(see Sec. Il Casa/n=1 cm.(In this paper we have fies the use of the random phase approximation for succes-
ignored collective effects, collisions and atomic processessive kicks produced by coherent wave-particle interaction
all of which may be important in such experiments, so thewithout having to invoke a nonlinear threshold for resonance
use of the ECRIN parameters should be regarded as illustraverlap, or collisions. Such systems cannot be analyzed by
tive only.) area-preserving maps, and thus fall outside the general

VIl. DISCUSSION

VIIl. CONCLUSION



PRE 60 QUASILINEAR THEORY OF COLLISIONLESS FERM. .. 7411

framework usually assumed for the analysis of rf and micro- Finally, we have illustrated these concepts using param-

wave heating in bounded systefi®2]. eters from a fairly typical electron-cyclotron heating experi-
As an alternative to the Fokker-Planck approach for dement.

riving the energy diffusion equation we have developed a

variant of the quasilinear diffusion formalism based on aver-

aging the single-particle Liouville equation. This provides a ACKNOWLEDGMENTS
general and efficient formalism for treating complex geom-
etries. One of us(R.L.D.) takes pleasure in acknowledging use-

We have applied the formalism to an exactly solubleful comments from Dr. M.A. Lieberman, Dr. G.G. Borg, Dr.
model for nonresonant Fermi acceleration and found &.E. Sheridan, Dr. M.A. Tereschenko, and Dr. S. Sridhar.
transit-time correction factor that becomes exponentiallfNumerical work and graphics were done using
small in the high-frequency limit. MATHEMATICA 3.0 [27].
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